This Chat is read-only. Login to resume chatting.
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>com.vaadin</groupId>
<artifactId>vaadin-spring-boot-starter</artifactId>
</dependency>
<!-- Add your machine learning library here -->
</dependencies>import org.springframework.data.mongodb.repository.MongoRepository;
import your.package.Client;
public interface ClientRepository extends MongoRepository<Client, String> {
}
import java.util.List;
import your.package.Client;
@Service
public class ClientService {
@Autowired
private ClientRepository clientRepository;
public List<Client> getAllClients() {
return clientRepository.findAll();
}
// Add other methods to fetch data from the database
}import com.vaadin.flow.component.button.Button;
import com.vaadin.flow.component.grid.Grid;
import com.vaadin.flow.component.orderedlayout.VerticalLayout;
import com.vaadin.flow.router.Route;
import your.package.Client;
import your.package.ClientService;
@Route("")
public class MainView extends VerticalLayout {
private ClientService clientService;
private Grid<Client> grid;
public MainView(ClientService clientService) {
this.clientService = clientService;
buildLayout();
}
private void buildLayout() {
grid = new Grid<>(Client.class);
grid.setColumns("name", "email");
grid.setItems(clientService.getAllClients());
add(grid);
Button refreshButton = new Button("Refresh", event -> {
grid.setItems(clientService.getAllClients());
});
add(refreshButton);
}
}import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import your.package.ClientService;
@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
@Bean
public ClientService clientService() {
// Initialize your machine learning model and vector database here
return new ClientService();
}
}<dependency>
<groupId>io.milvus</groupId>
<artifactId>milvus-sdk-java</artifactId>
<version>2.0.0-beta.1</version>
</dependency>import io.milvus.param.R;
import io.milvus.param.collection.AddCollectionParam;
import io.milvus.param.collection.CreateIndexParam;
import io.milvus.param.entity.*;
import io.milvus.param.metric.DistanceMetric;
import io.milvus.param.metric.L2Distance;
import io.milvus.param.partition.AutoID;
import io.milvus.param.partition.PartitionTag;
import io.milvus.response.collection.CreateCollectionResponse;
import io.milvus.response.collection.CreateIndexResponse;
import io.milvus.response.entity.InsertEntityResponse;
import org.springframework.stereotype.Service;
@Service
public class MilvusService {
// Initialize Milvus client here
public void createCollection(String collectionName, int dim) {
AddCollectionParam param = AddCollectionParam.newBuilder()
.withCollectionName(collectionName)
.withDim(dim)
.withDescription("MongoDB data collection")
.withMetricType(DistanceMetric.L2)
.withIndexType(R.IndexType.IVF_FLAT)
.withIndexParam(new CreateIndexParam.IndexIVFFlatParam().withNlist(1024))
.build();
CreateCollectionResponse response = milvusClient.createCollection(param);
}
public void insertEntities(String collectionName, List<Entity> entities) {
for (Entity entity : entities) {
InsertEntityResponse response = milvusClient.insert(collectionName, entity);
}
}
}import io.milvus.param.entity.Entity;
import your.package.Client;
@Service
public class ClientService {
// ...
@Autowired
private MilvusService milvusService;
// Assuming you have a method to convert Client to vector
public float[] convertClientToVector(Client client) {
// Your conversion logic here
}
public void ingestClientsToMilvus(List<Client> clients) {
String collectionName = "mongo_data";
int dim = 128; // Dimension of your vector
milvusService.createCollection(collectionName, dim);
List<Entity> entities = new ArrayList<>();
for (Client client : clients) {
float[] vector = convertClientToVector(client);
Entity entity = new Entity(1L, new DataVector(vector));
entities.add(entity);
}
milvusService.insertEntities(collectionName, entities);
}
}<dependency>
<groupId>org.tensorflow</groupId>
<artifactId>tensorflow</artifactId>
<version>2.7.0</version>
</dependency>import org.tensorflow.framework.Graph;
import org.tensorflow.framework.Tensor;
import org.tensorflow.framework.TensorInfo;
import org.tensorflow.op.Ops;
import org.tensorflow.op.core.ConstantOp;
import org.tensorflow.op.core.Placeholder;
import org.tensorflow.op.core.Session;
import org.tensorflow.op.core.SessionRunner;
import org.tensorflow.op.core.TensorShape;
import org.tensorflow.op.core.TensorType;
import org.tensorflow.op.lang.Const;
import org.tensorflow.op.lang.Placeholder;
import org.tensorflow.op.strings.EncodeString;
import org.tensorflow.op.strings.StringSplit;
import org.tensorflow.op.strings.StringToNumber;
import org.tensorflow.proto.framework.GraphDef;
import org.tensorflow.proto.framework.NodeDef;
import org.tensorflow.proto.framework.TensorProto;
import org.tensorflow.types.TString;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
public class USEService {
private Session session;
public void loadModel(String modelPath) throws IOException {
Path path = Paths.get(modelPath);
byte[] modelBytes = Files.readAllBytes(path);
GraphDef graphDef = GraphDef.parseFrom(modelBytes);
Graph graph = new Graph();
graph.importGraphDef(graphDef);
session = new Session(graph);
}
}public List<float[]> encodeText(String[] texts) {
Ops ops = Ops.create(session.graph());
Placeholder inputPlaceholder = Placeholder.create(ops, "input_text", TensorType.string());
Tensor inputTensor = inputPlaceholder.feed(ops, Const.create(ops, texts));
EncodeString encodeOp = EncodeString.create(ops, inputTensor);
Tensor encodedTensor = encodeOp.output(0);
StringSplit splitOp = StringSplit.create(ops, encodedTensor, Const.create(ops, new TString(" ")));
Tensor splitTensor = splitOp.output(0);
StringToNumber stringToNumberOp = StringToNumber.create(ops, splitTensor, Const.create(ops, 0));
Tensor floatTensor = stringToNumberOp.output(0);
float[][] floats = floatTensor.floatValue();
List<float[]> vectors = new ArrayList<>();
for (float[] vector : floats) {
vectors.add(vector);
}
return vectors;
}@Service
public class ClientService {
// ...
@Autowired
private USEService useService;
public void ingestClientsToMilvus(List<Client> clients) {
// ...
String[] texts = clients.stream().map(Client::getText).toArray(String[]::new);
List<float[]> vectors = useService.encodeText(texts);
// ...
}
}