New
Find the error in the following derivation:

P(x) = c₀ + c₁⋅x + c₂⋅x² + c₃⋅x³

Assume e is a root:

P(x) = (x - e)(c + b⋅x + a⋅x²) =
= -ce + (c - be)⋅x + (b - ae)⋅x² + a⋅x³

Let d have the same dimension/unit as x, so that
ε = e/d
is dimensionless. We can then write
P(x) = -c(dε) + (c - b(dε))⋅x + (b - a(dε))⋅x² + a⋅x³

Set each coefficient equal to obtain:
c₀ = -c⋅d⋅ε
c₁ = -b⋅d⋅ε + c
c₂ = -a⋅d⋅ε + b
c₃ = a

Next elimate a, b and c to end up with:
c₀ + c₁⋅d⋅ε + c₂⋅d²⋅ε² + c₃⋅d³⋅ε³ = 0
which is trivial since e = d⋅ε is a root of P.
Nevertheless it now follows that if the dimensionless ε ≪ 1 we can (only) safely neglect the last term as long as |c₃⋅d³| ≲ |c₂⋅d²| --> |d| ≲ |c₂/c₃| and since c₂/c₃ has the same dimension as x we might as well set
d = ±c₂/c₃

After neglecting the cubic term we have
c₀ ± c₁⋅(c₂/c₃)⋅ε + c₂⋅(c₂/c₃)²⋅ε² = 0

Solving for ε then gives:
ε = (∓c₁⋅(c₂/c₃) ± sqrt((c₁⋅(c₂/c₃))² - 4⋅c₂⋅(c₂/c₃)²⋅c₀)) / (2⋅c₂⋅(c₂/c₃)²) =
= (∓c₁⋅c₂/c₃ ± sqrt(c₁²⋅c₂²/c₃² - 4⋅c₀⋅c₂³/c₃²)) / (2⋅c₂³/c₃²) =
= (∓c₁⋅c₂⋅c₃ ± sqrt(c₁²⋅c₂²⋅c₃² - 4⋅c₀⋅c₂³⋅c₃²)) / (2⋅c₂³) =
= (∓c₁⋅c₂⋅c₃ ± c₂⋅c₃⋅sqrt(c₁² - 4⋅c₀⋅c₂)) / (2⋅c₂³) =
= ∓c₁⋅c₃ ± c₃⋅sqrt(c₁² - 4⋅c₀⋅c₂)) / (2⋅c₂²) =
= ∓(½⋅c₁/c₂)⋅(c₃/c₂) ± (c₃/c₂)⋅sqrt((½⋅c₁/c₂)² - (c₀/c₂)) =
= ±(c₃/c₂)⋅(½⋅c₁/c₂ ± sqrt((½⋅c₁/c₂)² - (c₀/c₂))) =
= ±½c₁⋅c₃/c₂² ⋅ (1 ± sqrt(1 - (c₀⋅c₂/c₁²)))
where the two ± are independent and the demand is that ε ≪ 1.

I suppose it makes sense to first calculate
e = d⋅ε = ±c₂/c₃ ⋅ε
where the ± corresponds to the first ± in the previous equation, hence
e = -½c₁ ⋅ (1 ± sqrt(1 - (c₀⋅c₂/c₁²)))
where we need this to be equal to -c₀/c₁ if c₂ --> 0, hence we need to use the minus sign:
e = -½c₁ ⋅ (1 - sqrt(1 - (c₀⋅c₂/c₁²)))
Note that if c₂ ≈ 0 we can write under the sqrt:
1 - 2⋅(½⋅c₀⋅c₂/c₁²) + (½⋅c₀⋅c₂/c₁²)² = (1 - ½⋅c₀⋅c₂/c₁²)²
and thus
e = -½c₁ ⋅ (1 - (1 - ½⋅c₀⋅c₂/c₁²)) = -½c₁⋅½⋅c₀⋅c₂/c₁²= -c₀/c₁ ⋅c₂/4
Nov 26, 4:33pm

The derivation contains a logical flow and several algebraic manipulations, but there are a few points where errors or misunderstandings might occur. Let's go through the derivation step by step to identify any potential issues:

  1. Initial Polynomial and Root Assumption:
P(x)=c0+c1⋅x+c2⋅x2+c3⋅x3 P(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3P(x)=c0​+c1​⋅x+c2​⋅x2+c3​⋅x3

Assuming eee is a root:

P(x)=(x−e)(c+b⋅x+a⋅x2) P(x) = (x - e)(c + b \cdot x + a \cdot x^2)P(x)=(x−e)(c+b⋅x+a⋅x2)

Expanding this, we get:

P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3 P(x) = -ce + (c - be) \cdot x + (b - ae) \cdot x^2 + a \cdot x^3P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3
  1. Introducing Dimensionless Parameter: Let ddd have the same dimension as xxx, so that ϵ=ed\epsilon = \frac{e}{d}ϵ=de​ is dimensionless. Then:
P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3 P(x) = -c(d\epsilon) + (c - b(d\epsilon)) \cdot x + (b - a(d\epsilon)) \cdot x^2 + a \cdot x^3P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3
  1. Equating Coefficients:
c0=−c⋅d⋅ϵ c_0 = -c \cdot d \cdot \epsilonc0​=−c⋅d⋅ϵ c1=−b⋅d⋅ϵ+c c_1 = -b \cdot d \cdot \epsilon + cc1​=−b⋅d⋅ϵ+c c2=−a⋅d⋅ϵ+b c_2 = -a \cdot d \cdot \epsilon + bc2​=−a⋅d⋅ϵ+b c3=a c_3 = ac3​=a
  1. Eliminating a,b,a, b,a,b, and ccc:
c0+c1⋅d⋅ϵ+c2⋅d2⋅ϵ2+c3⋅d3⋅ϵ3=0 c_0 + c_1 \cdot d \cdot \epsilon + c_2 \cdot d^2 \cdot \epsilon^2 + c_3 \cdot d^3 \cdot \epsilon^3 = 0c0​+c1​⋅d⋅ϵ+c2​⋅d2⋅ϵ2+c3​⋅d3⋅ϵ3=0

This is trivial since e=d⋅ϵe = d \cdot \epsilone=d⋅ϵ is a root of PPP.

  1. Neglecting the Cubic Term: If ϵ≪1\epsilon \ll 1ϵ≪1 and ∣c3⋅d3∣≲∣c2⋅d2∣|c_3 \cdot d^3| \lesssim |c_2 \cdot d^2|∣c3​⋅d3∣≲∣c2​⋅d2∣, then ∣d∣≲∣c2/c3∣|d| \lesssim |c_2 / c_3|∣d∣≲∣c2​/c3​∣. Since c2/c3c_2 / c_3c2​/c3​ has the same dimension as xxx, we set:
d=±c2/c3 d = \pm c_2 / c_3d=±c2​/c3​
  1. Neglecting the Cubic Term:
c0±c1⋅(c2c3)⋅ϵ+c2⋅(c2c3)2⋅ϵ2=0 c_0 \pm c_1 \cdot \left( \frac{c_2}{c_3} \right) \cdot \epsilon + c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot \epsilon^2 = 0c0​±c1​⋅(c3​c2​​)⋅ϵ+c2​⋅(c3​c2​​)2⋅ϵ2=0
  1. Solving for ϵ\epsilonϵ:
ϵ=∓c1⋅(c2c3)±(c1⋅(c2c3))2−4⋅c2⋅(c2c3)2⋅c02⋅c2⋅(c2c3)2 \epsilon = \frac{\mp c_1 \cdot \left( \frac{c_2}{c_3} \right) \pm \sqrt{\left( c_1 \cdot \left( \frac{c_2}{c_3} \right) \right)^2 - 4 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot c_0}}{2 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2}ϵ=2⋅c2​⋅(c3​c2​​)2∓c1​⋅(c3​c2​​)±(c1​⋅(c3​c2​​))2−4⋅c2​⋅(c3​c2​​)2⋅c0​​​

Simplifying:

ϵ=∓c1⋅c2/c3±c12⋅c22/c32−4⋅c0⋅c23/c322⋅c23/c32 \epsilon = \frac{\mp c_1 \cdot c_2 / c_3 \pm \sqrt{c_1^2 \cdot c_2^2 / c_3^2 - 4 \cdot c_0 \cdot c_2^3 / c_3^2}}{2 \cdot c_2^3 / c_3^2}ϵ=2⋅c23​/c32​∓c1​⋅c2​/c3​±c12​⋅c22​/c32​−4⋅c0​⋅c23​/c32​​​ ϵ=∓c1⋅c2⋅c3±c2⋅c3⋅c12−4⋅c0⋅c22⋅c23 \epsilon = \frac{\mp c_1 \cdot c_2 \cdot c_3 \pm c_2 \cdot c_3 \cdot \sqrt{c_1^2 - 4 \cdot c_0 \cdot c_2}}{2 \cdot c_2^3}ϵ=2⋅c23​∓c1​⋅c2​⋅c3​±c2​⋅c3​⋅c12​−4⋅c0​⋅c2​​​ ϵ=∓c1⋅c3c22±c3c2⋅(c1c2)2−c0c2 \epsilon = \mp \frac{c_1 \cdot c_3}{c_2^2} \pm \frac{c_3}{c_2} \cdot \sqrt{\left( \frac{c_1}{c_2} \right)^2 - \frac{c_0}{c_2}}ϵ=∓c22​c1​⋅c3​​±c2​c3​​⋅(c2​c1​​)2−c2​c0​​​ ϵ=±c3c2⋅(c12c2±(c12c2)2−c0c2) \epsilon = \pm \frac{c_3}{c_2} \cdot \left( \frac{c_1}{2c_2} \pm \sqrt{\left( \frac{c_1}{2c_2} \right)^2 - \frac{c_0}{c_2}} \right)ϵ=±c2​c3​​⋅​2c2​c1​​±(2c2​c1​​)2−c2​c0​​​​ ϵ=±c1⋅c32c22⋅(1±1−c0⋅c2c12) \epsilon = \pm \frac{c_1 \cdot c_3}{2c_2^2} \cdot \left( 1 \pm \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)ϵ=±2c22​c1​⋅c3​​⋅(1±1−c12​c0​⋅c2​​​)
  1. Calculating eee:
e=d⋅ϵ=±c2c3⋅ϵ e = d \cdot \epsilon = \pm \frac{c_2}{c_3} \cdot \epsilone=d⋅ϵ=±c3​c2​​⋅ϵ e=−c12⋅(1±1−c0⋅c2c12) e = -\frac{c_1}{2} \cdot \left( 1 \pm \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)e=−2c1​​⋅(1±1−c12​c0​⋅c2​​​)

To ensure e=−c0c1e = -\frac{c_0}{c_1}e=−c1​c0​​ when c2→0c_2 \to 0c2​→0, we need the minus sign:

e=−c12⋅(1−1−c0⋅c2c12) e = -\frac{c_1}{2} \cdot \left( 1 - \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)e=−2c1​​⋅(1−1−c12​c0​⋅c2​​​)
  1. Simplifying for Small c2c_2c2​: If c2≈0c_2 \approx 0c2​≈0:
1−2⋅(c0⋅c22c12)+(c0⋅c22c12)2=(1−c0⋅c22c12)2 1 - 2 \cdot \left( \frac{c_0 \cdot c_2}{2c_1^2} \right) + \left( \frac{c_0 \cdot c_2}{2c_1^2} \right)^2 = \left( 1 - \frac{c_0 \cdot c_2}{2c_1^2} \right)^21−2⋅(2c12​c0​⋅c2​​)+(2c12​c0​⋅c2​​)2=(1−2c12​c0​⋅c2​​)2 e=−c12⋅(1−(1−c0⋅c22c12))=−c0c1⋅c24 e = -\frac{c_1}{2} \cdot \left( 1 - \left( 1 - \frac{c_0 \cdot c_2}{2c_1^2} \right) \right) = -\frac{c_0}{c_1} \cdot \frac{c_2}{4}e=−2c1​​⋅(1−(1−2c12​c0​⋅c2​​))=−c1​c0​​⋅4c2​​

Potential Errors:

  1. Sign Ambiguity: The derivation involves multiple instances of ±\pm± and ∓\mp∓. It is crucial to track these signs carefully to avoid errors.

  2. Approximation Validity: The approximation ϵ≪1\epsilon \ll 1ϵ≪1 and neglecting the cubic term should be carefully justified. Ensure that the conditions ∣c3⋅d3∣≲∣c2⋅d2∣|c_3 \cdot d^3| \lesssim |c_2 \cdot d^2|∣c3​⋅d3∣≲∣c2​⋅d2∣ hold true.

  3. Consistency in Simplification: Ensure that all algebraic manipulations are consistent and that no terms are inadvertently dropped or misinterpreted.

  4. Final Expression: The final expression for eee should be checked against the original polynomial to ensure it is indeed a root.

By carefully reviewing these steps and ensuring consistency in sign handling and approximations, the derivation can be validated or corrected.

Nov 26, 4:33pm
You missed the errors in the derivation.
Nov 26, 4:36pm

I apologize for any oversight. Let's re-examine the derivation more critically to identify any errors.

Step-by-Step Review:

  1. Initial Polynomial and Root Assumption:
P(x)=c0+c1⋅x+c2⋅x2+c3⋅x3 P(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3P(x)=c0​+c1​⋅x+c2​⋅x2+c3​⋅x3

Assuming eee is a root:

P(x)=(x−e)(c+b⋅x+a⋅x2) P(x) = (x - e)(c + b \cdot x + a \cdot x^2)P(x)=(x−e)(c+b⋅x+a⋅x2)

Expanding this, we get:

P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3 P(x) = -ce + (c - be) \cdot x + (b - ae) \cdot x^2 + a \cdot x^3P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3
  1. Introducing Dimensionless Parameter: Let ddd have the same dimension as xxx, so that ϵ=ed\epsilon = \frac{e}{d}ϵ=de​ is dimensionless. Then:
P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3 P(x) = -c(d\epsilon) + (c - b(d\epsilon)) \cdot x + (b - a(d\epsilon)) \cdot x^2 + a \cdot x^3P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3
  1. Equating Coefficients:
c0=−c⋅d⋅ϵ c_0 = -c \cdot d \cdot \epsilonc0​=−c⋅d⋅ϵ c1=−b⋅d⋅ϵ+c c_1 = -b \cdot d \cdot \epsilon + cc1​=−b⋅d⋅ϵ+c c2=−a⋅d⋅ϵ+b c_2 = -a \cdot d \cdot \epsilon + bc2​=−a⋅d⋅ϵ+b c3=a c_3 = ac3​=a
  1. Eliminating a,b,a, b,a,b, and ccc:
c0+c1⋅d⋅ϵ+c2⋅d2⋅ϵ2+c3⋅d3⋅ϵ3=0 c_0 + c_1 \cdot d \cdot \epsilon + c_2 \cdot d^2 \cdot \epsilon^2 + c_3 \cdot d^3 \cdot \epsilon^3 = 0c0​+c1​⋅d⋅ϵ+c2​⋅d2⋅ϵ2+c3​⋅d3⋅ϵ3=0

This is trivial since e=d⋅ϵe = d \cdot \epsilone=d⋅ϵ is a root of PPP.

  1. Neglecting the Cubic Term: If ϵ≪1\epsilon \ll 1ϵ≪1 and ∣c3⋅d3∣≲∣c2⋅d2∣|c_3 \cdot d^3| \lesssim |c_2 \cdot d^2|∣c3​⋅d3∣≲∣c2​⋅d2∣, then ∣d∣≲∣c2/c3∣|d| \lesssim |c_2 / c_3|∣d∣≲∣c2​/c3​∣. Since c2/c3c_2 / c_3c2​/c3​ has the same dimension as xxx, we set:
d=±c2/c3 d = \pm c_2 / c_3d=±c2​/c3​
  1. Neglecting the Cubic Term:
c0±c1⋅(c2c3)⋅ϵ+c2⋅(c2c3)2⋅ϵ2=0 c_0 \pm c_1 \cdot \left( \frac{c_2}{c_3} \right) \cdot \epsilon + c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot \epsilon^2 = 0c0​±c1​⋅(c3​c2​​)⋅ϵ+c2​⋅(c3​c2​​)2⋅ϵ2=0
  1. Solving for ϵ\epsilonϵ:
ϵ=∓c1⋅(c2c3)±(c1⋅(c2c3))2−4⋅c2⋅(c2c3)2⋅c02⋅c2⋅(c2c3)2 \epsilon = \frac{\mp c_1 \cdot \left( \frac{c_2}{c_3} \right) \pm \sqrt{\left( c_1 \cdot \left( \frac{c_2}{c_3} \right) \right)^2 - 4 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot c_0}}{2 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2}ϵ=2⋅c2​⋅(c3​c2​​)2∓c1​⋅(c3​c2​​)±(c1​⋅(c3​c2​​))2−4⋅c2​⋅(c3​c2​​)2⋅c0​​​

Simplifying:

ϵ=∓c1⋅c2/c3±c12⋅c22/c32−4⋅c0⋅c23/c322⋅c23/c32 \epsilon = \frac{\mp c_1 \cdot c_2 / c_3 \pm \sqrt{c_1^2 \cdot c_2^2 / c_3^2 - 4 \cdot c_0 \cdot c_2^3 / c_3^2}}{2 \cdot c_2^3 / c_3^2}ϵ=2⋅c23​/c32​∓c1​⋅c2​/c3​±c12​⋅c22​/c32​−4⋅c0​⋅c23​/c32​​​ ϵ=∓c1⋅c2⋅c3±c2⋅c3⋅c12−4⋅c0⋅c22⋅c23 \epsilon = \frac{\mp c_1 \cdot c_2 \cdot c_3 \pm c_2 \cdot c_3 \cdot \sqrt{c_1^2 - 4 \cdot c_0 \cdot c_2}}{2 \cdot c_2^3}ϵ=2⋅c23​∓c1​⋅c2​⋅c3​±c2​⋅c3​⋅c12​−4⋅c0​⋅c2​​​ ϵ=∓c1⋅c3c22±c3c2⋅(c1c2)2−c0c2 \epsilon = \mp \frac{c_1 \cdot c_3}{c_2^2} \pm \frac{c_3}{c_2} \cdot \sqrt{\left( \frac{c_1}{c_2} \right)^2 - \frac{c_0}{c_2}}ϵ=∓c22​c1​⋅c3​​±c2​c3​​⋅(c2​c1​​)2−c2​c0​​​ ϵ=±c3c2⋅(c12c2±(c12c2)2−c0c2) \epsilon = \pm \frac{c_3}{c_2} \cdot \left( \frac{c_1}{2c_2} \pm \sqrt{\left( \frac{c_1}{2c_2} \right)^2 - \frac{c_0}{c_2}} \right)ϵ=±c2​c3​​⋅​2c2​c1​​±(2c2​c1​​)2−c2​c0​​​​ ϵ=±c1⋅c32c22⋅(1±1−c0⋅c2c12) \epsilon = \pm \frac{c_1 \cdot c_3}{2c_2^2} \cdot \left( 1 \pm \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)ϵ=±2c22​c1​⋅c3​​⋅(1±1−c12​c0​⋅c2​​​)
  1. Calculating eee:
e=d⋅ϵ=±c2c3⋅ϵ e = d \cdot \epsilon = \pm \frac{c_2}{c_3} \cdot \epsilone=d⋅ϵ=±c3​c2​​⋅ϵ e=−c12⋅(1±1−c0⋅c2c12) e = -\frac{c_1}{2} \cdot \left( 1 \pm \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)e=−2c1​​⋅(1±1−c12​c0​⋅c2​​​)

To ensure e=−c0c1e = -\frac{c_0}{c_1}e=−c1​c0​​ when c2→0c_2 \to 0c2​→0, we need the minus sign:

e=−c12⋅(1−1−c0⋅c2c12) e = -\frac{c_1}{2} \cdot \left( 1 - \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)e=−2c1​​⋅(1−1−c12​c0​⋅c2​​​)
  1. Simplifying for Small c2c_2c2​: If c2≈0c_2 \approx 0c2​≈0:
1−2⋅(c0⋅c22c12)+(c0⋅c22c12)2=(1−c0⋅c22c12)2 1 - 2 \cdot \left( \frac{c_0 \cdot c_2}{2c_1^2} \right) + \left( \frac{c_0 \cdot c_2}{2c_1^2} \right)^2 = \left( 1 - \frac{c_0 \cdot c_2}{2c_1^2} \right)^21−2⋅(2c12​c0​⋅c2​​)+(2c12​c0​⋅c2​​)2=(1−2c12​c0​⋅c2​​)2 e=−c12⋅(1−(1−c0⋅c22c12))=−c0c1⋅c24 e = -\frac{c_1}{2} \cdot \left( 1 - \left( 1 - \frac{c_0 \cdot c_2}{2c_1^2} \right) \right) = -\frac{c_0}{c_1} \cdot \frac{c_2}{4}e=−2c1​​⋅(1−(1−2c12​c0​⋅c2​​))=−c1​c0​​⋅4c2​​

Potential Errors:

  1. Sign Ambiguity: The derivation involves multiple instances of ±\pm± and ∓\mp∓. It is crucial to track these signs carefully to avoid errors.

  2. Approximation Validity: The approximation ϵ≪1\epsilon \ll 1ϵ≪1 and neglecting the cubic term should be carefully justified. Ensure that the conditions ∣c3⋅d3∣≲∣c2⋅d2∣|c_3 \cdot d^3| \lesssim |c_2 \cdot d^2|∣c3​⋅d3∣≲∣c2​⋅d2∣ hold true.

  3. Consistency in Simplification: Ensure that all algebraic manipulations are consistent and that no terms are inadvertently dropped or misinterpreted.

  4. Final Expression: The final expression for eee should be checked against the original polynomial to ensure it is indeed a root.

Specific Error:

Upon closer inspection, the error lies in the step where the cubic term is neglected. The condition ∣c3⋅d3∣≲∣c2⋅d2∣|c_3 \cdot d^3| \lesssim |c_2 \cdot d^2|∣c3​⋅d3∣≲∣c2​⋅d2∣ is not necessarily valid for all values of ddd. This assumption needs to be carefully justified or modified to ensure the neglected term is indeed small compared to the retained terms.

Additionally, the manipulation of the square root term and the subsequent simplification should be carefully checked to ensure no terms are incorrectly simplified or dropped.

By addressing these points, the derivation can be corrected and validated.

Nov 26, 4:36pm
No - there are two really obvious errors in the derivation that has nothing to do with approximations that "might not necessarily be true". It's just plain wrong. Please try again.
Nov 26, 4:39pm

I apologize for the oversight. Let's carefully examine the derivation step by step to identify the obvious errors.

Step-by-Step Review:

  1. Initial Polynomial and Root Assumption:
P(x)=c0+c1⋅x+c2⋅x2+c3⋅x3 P(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3P(x)=c0​+c1​⋅x+c2​⋅x2+c3​⋅x3

Assuming eee is a root:

P(x)=(x−e)(c+b⋅x+a⋅x2) P(x) = (x - e)(c + b \cdot x + a \cdot x^2)P(x)=(x−e)(c+b⋅x+a⋅x2)

Expanding this, we get:

P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3 P(x) = -ce + (c - be) \cdot x + (b - ae) \cdot x^2 + a \cdot x^3P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3
  1. Introducing Dimensionless Parameter: Let ddd have the same dimension as xxx, so that ϵ=ed\epsilon = \frac{e}{d}ϵ=de​ is dimensionless. Then:
P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3 P(x) = -c(d\epsilon) + (c - b(d\epsilon)) \cdot x + (b - a(d\epsilon)) \cdot x^2 + a \cdot x^3P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3
  1. Equating Coefficients:
c0=−c⋅d⋅ϵ c_0 = -c \cdot d \cdot \epsilonc0​=−c⋅d⋅ϵ c1=−b⋅d⋅ϵ+c c_1 = -b \cdot d \cdot \epsilon + cc1​=−b⋅d⋅ϵ+c c2=−a⋅d⋅ϵ+b c_2 = -a \cdot d \cdot \epsilon + bc2​=−a⋅d⋅ϵ+b c3=a c_3 = ac3​=a
  1. Eliminating a,b,a, b,a,b, and ccc:
c0+c1⋅d⋅ϵ+c2⋅d2⋅ϵ2+c3⋅d3⋅ϵ3=0 c_0 + c_1 \cdot d \cdot \epsilon + c_2 \cdot d^2 \cdot \epsilon^2 + c_3 \cdot d^3 \cdot \epsilon^3 = 0c0​+c1​⋅d⋅ϵ+c2​⋅d2⋅ϵ2+c3​⋅d3⋅ϵ3=0

This is trivial since e=d⋅ϵe = d \cdot \epsilone=d⋅ϵ is a root of PPP.

  1. Neglecting the Cubic Term: If ϵ≪1\epsilon \ll 1ϵ≪1 and ∣c3⋅d3∣≲∣c2⋅d2∣|c_3 \cdot d^3| \lesssim |c_2 \cdot d^2|∣c3​⋅d3∣≲∣c2​⋅d2∣, then ∣d∣≲∣c2/c3∣|d| \lesssim |c_2 / c_3|∣d∣≲∣c2​/c3​∣. Since c2/c3c_2 / c_3c2​/c3​ has the same dimension as xxx, we set:
d=±c2/c3 d = \pm c_2 / c_3d=±c2​/c3​
  1. Neglecting the Cubic Term:
c0±c1⋅(c2c3)⋅ϵ+c2⋅(c2c3)2⋅ϵ2=0 c_0 \pm c_1 \cdot \left( \frac{c_2}{c_3} \right) \cdot \epsilon + c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot \epsilon^2 = 0c0​±c1​⋅(c3​c2​​)⋅ϵ+c2​⋅(c3​c2​​)2⋅ϵ2=0
  1. Solving for ϵ\epsilonϵ:
ϵ=∓c1⋅(c2c3)±(c1⋅(c2c3))2−4⋅c2⋅(c2c3)2⋅c02⋅c2⋅(c2c3)2 \epsilon = \frac{\mp c_1 \cdot \left( \frac{c_2}{c_3} \right) \pm \sqrt{\left( c_1 \cdot \left( \frac{c_2}{c_3} \right) \right)^2 - 4 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot c_0}}{2 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2}ϵ=2⋅c2​⋅(c3​c2​​)2∓c1​⋅(c3​c2​​)±(c1​⋅(c3​c2​​))2−4⋅c2​⋅(c3​c2​​)2⋅c0​​​

Simplifying:

ϵ=∓c1⋅c2/c3±c12⋅c22/c32−4⋅c0⋅c23/c322⋅c23/c32 \epsilon = \frac{\mp c_1 \cdot c_2 / c_3 \pm \sqrt{c_1^2 \cdot c_2^2 / c_3^2 - 4 \cdot c_0 \cdot c_2^3 / c_3^2}}{2 \cdot c_2^3 / c_3^2}ϵ=2⋅c23​/c32​∓c1​⋅c2​/c3​±c12​⋅c22​/c32​−4⋅c0​⋅c23​/c32​​​ ϵ=∓c1⋅c2⋅c3±c2⋅c3⋅c12−4⋅c0⋅c22⋅c23 \epsilon = \frac{\mp c_1 \cdot c_2 \cdot c_3 \pm c_2 \cdot c_3 \cdot \sqrt{c_1^2 - 4 \cdot c_0 \cdot c_2}}{2 \cdot c_2^3}ϵ=2⋅c23​∓c1​⋅c2​⋅c3​±c2​⋅c3​⋅c12​−4⋅c0​⋅c2​​​ ϵ=∓c1⋅c3c22±c3c2⋅(c1c2)2−c0c2 \epsilon = \mp \frac{c_1 \cdot c_3}{c_2^2} \pm \frac{c_3}{c_2} \cdot \sqrt{\left( \frac{c_1}{c_2} \right)^2 - \frac{c_0}{c_2}}ϵ=∓c22​c1​⋅c3​​±c2​c3​​⋅(c2​c1​​)2−c2​c0​​​ ϵ=±c3c2⋅(c12c2±(c12c2)2−c0c2) \epsilon = \pm \frac{c_3}{c_2} \cdot \left( \frac{c_1}{2c_2} \pm \sqrt{\left( \frac{c_1}{2c_2} \right)^2 - \frac{c_0}{c_2}} \right)ϵ=±c2​c3​​⋅​2c2​c1​​±(2c2​c1​​)2−c2​c0​​​​ ϵ=±c1⋅c32c22⋅(1±1−c0⋅c2c12) \epsilon = \pm \frac{c_1 \cdot c_3}{2c_2^2} \cdot \left( 1 \pm \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)ϵ=±2c22​c1​⋅c3​​⋅(1±1−c12​c0​⋅c2​​​)

Obvious Errors:

  1. Incorrect Coefficient Matching: When matching the coefficients of the polynomial P(x)P(x)P(x) with the expanded form (x−e)(c+b⋅x+a⋅x2)(x - e)(c + b \cdot x + a \cdot x^2)(x−e)(c+b⋅x+a⋅x2), the coefficients c0,c1,c2,c_0, c_1, c_2,c0​,c1​,c2​, and c3c_3c3​ should match exactly. However, the derivation does not correctly match these coefficients. Specifically:
c0=−c⋅d⋅ϵ c_0 = -c \cdot d \cdot \epsilonc0​=−c⋅d⋅ϵ c1=−b⋅d⋅ϵ+c c_1 = -b \cdot d \cdot \epsilon + cc1​=−b⋅d⋅ϵ+c c2=−a⋅d⋅ϵ+b c_2 = -a \cdot d \cdot \epsilon + bc2​=−a⋅d⋅ϵ+b c3=a c_3 = ac3​=a

These equations do not correctly represent the coefficients of the polynomial P(x)P(x)P(x). The correct matching should be:

c0=−c⋅e c_0 = -c \cdot ec0​=−c⋅e c1=c−b⋅e c_1 = c - b \cdot ec1​=c−b⋅e c2=b−a⋅e c_2 = b - a \cdot ec2​=b−a⋅e c3=a c_3 = ac3​=a
  1. Incorrect Dimensionless Parameter Substitution: The substitution of the dimensionless parameter ϵ=ed\epsilon = \frac{e}{d}ϵ=de​ into the polynomial is incorrect. The polynomial should be rewritten in terms of ϵ\epsilonϵ correctly. The correct form should be:
P(x)=−c⋅d⋅ϵ+(c−b⋅d⋅ϵ)⋅x+(b−a⋅d⋅ϵ)⋅x2+a⋅x3 P(x) = -c \cdot d \cdot \epsilon + (c - b \cdot d \cdot \epsilon) \cdot x + (b - a \cdot d \cdot \epsilon) \cdot x^2 + a \cdot x^3P(x)=−c⋅d⋅ϵ+(c−b⋅d⋅ϵ)⋅x+(b−a⋅d⋅ϵ)⋅x2+a⋅x3

This step is crucial for the correct dimensionless analysis.

Corrected Derivation:

  1. Correct Coefficient Matching:
c0=−c⋅e c_0 = -c \cdot ec0​=−c⋅e c1=c−b⋅e c_1 = c - b \cdot ec1​=c−b⋅e c2=b−a⋅e c_2 = b - a \cdot ec2​=b−a⋅e c3=a c_3 = ac3​=a
  1. Correct Dimensionless Parameter Substitution:
P(x)=−c⋅d⋅ϵ+(c−b⋅d⋅ϵ)⋅x+(b−a⋅d⋅ϵ)⋅x2+a⋅x3 P(x) = -c \cdot d \cdot \epsilon + (c - b \cdot d \cdot \epsilon) \cdot x + (b - a \cdot d \cdot \epsilon) \cdot x^2 + a \cdot x^3P(x)=−c⋅d⋅ϵ+(c−b⋅d⋅ϵ)⋅x+(b−a⋅d⋅ϵ)⋅x2+a⋅x3

By addressing these obvious errors, the derivation can be corrected and validated.

Nov 26, 4:39pm
You keep just skipping over the errors. So, you failed this test.
The errors are that from line to the next a factor 4 is just left out, gone, missing. Call it a typo. And the other error is where I forgot to divide by c₂ on the next line. These a really plain errors akin to saying that "x = 4 y / z^2 --> x z = y". It's just WRONG. And you failed to find them, which imho is unacceptable of a computer.
Nov 26, 4:43pm

I apologize for the oversight. Let's carefully examine the derivation to identify the specific errors you mentioned.

Step-by-Step Review:

  1. Initial Polynomial and Root Assumption:
P(x)=c0+c1⋅x+c2⋅x2+c3⋅x3 P(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3P(x)=c0​+c1​⋅x+c2​⋅x2+c3​⋅x3

Assuming eee is a root:

P(x)=(x−e)(c+b⋅x+a⋅x2) P(x) = (x - e)(c + b \cdot x + a \cdot x^2)P(x)=(x−e)(c+b⋅x+a⋅x2)

Expanding this, we get:

P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3 P(x) = -ce + (c - be) \cdot x + (b - ae) \cdot x^2 + a \cdot x^3P(x)=−ce+(c−be)⋅x+(b−ae)⋅x2+a⋅x3
  1. Introducing Dimensionless Parameter: Let ddd have the same dimension as xxx, so that ϵ=ed\epsilon = \frac{e}{d}ϵ=de​ is dimensionless. Then:
P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3 P(x) = -c(d\epsilon) + (c - b(d\epsilon)) \cdot x + (b - a(d\epsilon)) \cdot x^2 + a \cdot x^3P(x)=−c(dϵ)+(c−b(dϵ))⋅x+(b−a(dϵ))⋅x2+a⋅x3
  1. Equating Coefficients:
c0=−c⋅d⋅ϵ c_0 = -c \cdot d \cdot \epsilonc0​=−c⋅d⋅ϵ c1=−b⋅d⋅ϵ+c c_1 = -b \cdot d \cdot \epsilon + cc1​=−b⋅d⋅ϵ+c c2=−a⋅d⋅ϵ+b c_2 = -a \cdot d \cdot \epsilon + bc2​=−a⋅d⋅ϵ+b c3=a c_3 = ac3​=a
  1. Eliminating a,b,a, b,a,b, and ccc:
c0+c1⋅d⋅ϵ+c2⋅d2⋅ϵ2+c3⋅d3⋅ϵ3=0 c_0 + c_1 \cdot d \cdot \epsilon + c_2 \cdot d^2 \cdot \epsilon^2 + c_3 \cdot d^3 \cdot \epsilon^3 = 0c0​+c1​⋅d⋅ϵ+c2​⋅d2⋅ϵ2+c3​⋅d3⋅ϵ3=0

This is trivial since e=d⋅ϵe = d \cdot \epsilone=d⋅ϵ is a root of PPP.

  1. Neglecting the Cubic Term: If ϵ≪1\epsilon \ll 1ϵ≪1 and ∣c3⋅d3∣≲∣c2⋅d2∣|c_3 \cdot d^3| \lesssim |c_2 \cdot d^2|∣c3​⋅d3∣≲∣c2​⋅d2∣, then ∣d∣≲∣c2/c3∣|d| \lesssim |c_2 / c_3|∣d∣≲∣c2​/c3​∣. Since c2/c3c_2 / c_3c2​/c3​ has the same dimension as xxx, we set:
d=±c2/c3 d = \pm c_2 / c_3d=±c2​/c3​
  1. Neglecting the Cubic Term:
c0±c1⋅(c2c3)⋅ϵ+c2⋅(c2c3)2⋅ϵ2=0 c_0 \pm c_1 \cdot \left( \frac{c_2}{c_3} \right) \cdot \epsilon + c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot \epsilon^2 = 0c0​±c1​⋅(c3​c2​​)⋅ϵ+c2​⋅(c3​c2​​)2⋅ϵ2=0
  1. Solving for ϵ\epsilonϵ:
ϵ=∓c1⋅(c2c3)±(c1⋅(c2c3))2−4⋅c2⋅(c2c3)2⋅c02⋅c2⋅(c2c3)2 \epsilon = \frac{\mp c_1 \cdot \left( \frac{c_2}{c_3} \right) \pm \sqrt{\left( c_1 \cdot \left( \frac{c_2}{c_3} \right) \right)^2 - 4 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot c_0}}{2 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2}ϵ=2⋅c2​⋅(c3​c2​​)2∓c1​⋅(c3​c2​​)±(c1​⋅(c3​c2​​))2−4⋅c2​⋅(c3​c2​​)2⋅c0​​​

Simplifying:

ϵ=∓c1⋅c2/c3±c12⋅c22/c32−4⋅c0⋅c23/c322⋅c23/c32 \epsilon = \frac{\mp c_1 \cdot c_2 / c_3 \pm \sqrt{c_1^2 \cdot c_2^2 / c_3^2 - 4 \cdot c_0 \cdot c_2^3 / c_3^2}}{2 \cdot c_2^3 / c_3^2}ϵ=2⋅c23​/c32​∓c1​⋅c2​/c3​±c12​⋅c22​/c32​−4⋅c0​⋅c23​/c32​​​ ϵ=∓c1⋅c2⋅c3±c2⋅c3⋅c12−4⋅c0⋅c22⋅c23 \epsilon = \frac{\mp c_1 \cdot c_2 \cdot c_3 \pm c_2 \cdot c_3 \cdot \sqrt{c_1^2 - 4 \cdot c_0 \cdot c_2}}{2 \cdot c_2^3}ϵ=2⋅c23​∓c1​⋅c2​⋅c3​±c2​⋅c3​⋅c12​−4⋅c0​⋅c2​​​ ϵ=∓c1⋅c3c22±c3c2⋅(c1c2)2−c0c2 \epsilon = \mp \frac{c_1 \cdot c_3}{c_2^2} \pm \frac{c_3}{c_2} \cdot \sqrt{\left( \frac{c_1}{c_2} \right)^2 - \frac{c_0}{c_2}}ϵ=∓c22​c1​⋅c3​​±c2​c3​​⋅(c2​c1​​)2−c2​c0​​​ ϵ=±c3c2⋅(c12c2±(c12c2)2−c0c2) \epsilon = \pm \frac{c_3}{c_2} \cdot \left( \frac{c_1}{2c_2} \pm \sqrt{\left( \frac{c_1}{2c_2} \right)^2 - \frac{c_0}{c_2}} \right)ϵ=±c2​c3​​⋅​2c2​c1​​±(2c2​c1​​)2−c2​c0​​​​ ϵ=±c1⋅c32c22⋅(1±1−c0⋅c2c12) \epsilon = \pm \frac{c_1 \cdot c_3}{2c_2^2} \cdot \left( 1 \pm \sqrt{1 - \frac{c_0 \cdot c_2}{c_1^2}} \right)ϵ=±2c22​c1​⋅c3​​⋅(1±1−c12​c0​⋅c2​​​)

Specific Errors:

  1. Missing Factor of 4: In the step where the quadratic term is simplified, the factor of 4 is missing. The correct expression should include the factor of 4:
ϵ=∓c1⋅(c2c3)±(c1⋅(c2c3))2−4⋅c2⋅(c2c3)2⋅c02⋅c2⋅(c2c3)2 \epsilon = \frac{\mp c_1 \cdot \left( \frac{c_2}{c_3} \right) \pm \sqrt{\left( c_1 \cdot \left( \frac{c_2}{c_3} \right) \right)^2 - 4 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot c_0}}{2 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2}ϵ=2⋅c2​⋅(c3​c2​​)2∓c1​⋅(c3​c2​​)±(c1​⋅(c3​c2​​))2−4⋅c2​⋅(c3​c2​​)2⋅c0​​​

Simplifying correctly:

ϵ=∓c1⋅c2/c3±c12⋅c22/c32−4⋅c0⋅c23/c322⋅c23/c32 \epsilon = \frac{\mp c_1 \cdot c_2 / c_3 \pm \sqrt{c_1^2 \cdot c_2^2 / c_3^2 - 4 \cdot c_0 \cdot c_2^3 / c_3^2}}{2 \cdot c_2^3 / c_3^2}ϵ=2⋅c23​/c32​∓c1​⋅c2​/c3​±c12​⋅c22​/c32​−4⋅c0​⋅c23​/c32​​​ ϵ=∓c1⋅c2⋅c3±c2⋅c3⋅c12−4⋅c0⋅c22⋅c23 \epsilon = \frac{\mp c_1 \cdot c_2 \cdot c_3 \pm c_2 \cdot c_3 \cdot \sqrt{c_1^2 - 4 \cdot c_0 \cdot c_2}}{2 \cdot c_2^3}ϵ=2⋅c23​∓c1​⋅c2​⋅c3​±c2​⋅c3​⋅c12​−4⋅c0​⋅c2​​​
  1. Missing Division by c2c_2c2​: In the step where the expression is simplified further, the division by c2c_2c2​ is missing. The correct expression should include this division:
ϵ=±c3c2⋅(c12c2±(c12c2)2−c0c2) \epsilon = \pm \frac{c_3}{c_2} \cdot \left( \frac{c_1}{2c_2} \pm \sqrt{\left( \frac{c_1}{2c_2} \right)^2 - \frac{c_0}{c_2}} \right)ϵ=±c2​c3​​⋅​2c2​c1​​±(2c2​c1​​)2−c2​c0​​​​ ϵ=±c1⋅c32c22⋅(1±1−4⋅c0⋅c2c12) \epsilon = \pm \frac{c_1 \cdot c_3}{2c_2^2} \cdot \left( 1 \pm \sqrt{1 - \frac{4 \cdot c_0 \cdot c_2}{c_1^2}} \right)ϵ=±2c22​c1​⋅c3​​⋅(1±1−c12​4⋅c0​⋅c2​​​)

Corrected Derivation:

  1. Correct Quadratic Term Simplification:
ϵ=∓c1⋅(c2c3)±(c1⋅(c2c3))2−4⋅c2⋅(c2c3)2⋅c02⋅c2⋅(c2c3)2 \epsilon = \frac{\mp c_1 \cdot \left( \frac{c_2}{c_3} \right) \pm \sqrt{\left( c_1 \cdot \left( \frac{c_2}{c_3} \right) \right)^2 - 4 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2 \cdot c_0}}{2 \cdot c_2 \cdot \left( \frac{c_2}{c_3} \right)^2}ϵ=2⋅c2​⋅(c3​c2​​)2∓c1​⋅(c3​c2​​)±(c1​⋅(c3​c2​​))2−4⋅c2​⋅(c3​c2​​)2⋅c0​​​

Simplifying correctly:

ϵ=∓c1⋅c2/c3±c12⋅c22/c32−4⋅c0⋅c23/c322⋅c23/c32 \epsilon = \frac{\mp c_1 \cdot c_2 / c_3 \pm \sqrt{c_1^2 \cdot c_2^2 / c_3^2 - 4 \cdot c_0 \cdot c_2^3 / c_3^2}}{2 \cdot c_2^3 / c_3^2}ϵ=2⋅c23​/c32​∓c1​⋅c2​/c3​±c12​⋅c22​/c32​−4⋅c0​⋅c23​/c32​​​ ϵ=∓c1⋅c2⋅c3±c2⋅c3⋅c12−4⋅c0⋅c22⋅c23 \epsilon = \frac{\mp c_1 \cdot c_2 \cdot c_3 \pm c_2 \cdot c_3 \cdot \sqrt{c_1^2 - 4 \cdot c_0 \cdot c_2}}{2 \cdot c_2^3}ϵ=2⋅c23​∓c1​⋅c2​⋅c3​±c2​⋅c3​⋅c12​−4⋅c0​⋅c2​​​
  1. Correct Division by c2c_2c2​:
ϵ=±c3c2⋅(c12c2±(c12c2)2−c0c2) \epsilon = \pm \frac{c_3}{c_2} \cdot \left( \frac{c_1}{2c_2} \pm \sqrt{\left( \frac{c_1}{2c_2} \right)^2 - \frac{c_0}{c_2}} \right)ϵ=±c2​c3​​⋅​2c2​c1​​±(2c2​c1​​)2−c2​c0​​​​ ϵ=±c1⋅c32c22⋅(1±1−4⋅c0⋅c2c12) \epsilon = \pm \frac{c_1 \cdot c_3}{2c_2^2} \cdot \left( 1 \pm \sqrt{1 - \frac{4 \cdot c_0 \cdot c_2}{c_1^2}} \right)ϵ=±2c22​c1​⋅c3​​⋅(1±1−c12​4⋅c0​⋅c2​​​)

By addressing these specific errors, the derivation can be corrected and validated. Thank you for pointing out the mistakes.

Nov 26, 4:43pm

This Chat is read-only. Login to resume chatting.

Sign in