This Chat is read-only. Login to resume chatting.
from faster_whisper import WhisperModel
model_size = "medium"
model = WhisperModel(model_size, device="cpu", compute_type="int8")
segments, info = model.transcribe("audio_file.mp3", beam_size=5)
for segment in segments:
print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}")from faster_whisper import WhisperModel
model_size = "medium"
model = WhisperModel(model_size, device="cpu", compute_type="int8")
segments, info = model.transcribe("audio_file.mp3", beam_size=5)
# Open a file to write the transcription
with open("transcription.txt", "w", encoding="utf-8") as f:
for segment in segments:
line = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
print(line.strip()) # Print to console
f.write(line) # Write to file
print("\nTranscription saved to 'transcription.txt'")from faster_whisper import WhisperModel
model_size = "medium"
model = WhisperModel(model_size, device="cpu", compute_type="int8")
segments, info = model.transcribe("audio_file.mp3", beam_size=5)
with open("transcription.srt", "w", encoding="utf-8") as f:
for i, segment in enumerate(segments, start=1):
start_time = f"{int(segment.start // 3600):02d}:{int((segment.start % 3600) // 60):02d}:{int(segment.start % 60):02d}"
end_time = f"{int(segment.end // 3600):02d}:{int((segment.end % 3600) // 60):02d}:{int(segment.end % 60):02d}"
f.write(f"{i}\n{start_time},000 --> {end_time},000\n{segment.text}\n\n")
print("Transcription saved to 'transcription.srt'")