This Chat is read-only. Login to resume chatting.
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
# Create a DataFrame
import pandas as pd
df = pd.DataFrame(data=cancer.data, columns=cancer.feature_names)
df['target'] = cancer.target# Check for missing values
print(df.isnull().sum())
# Visualize the data
import seaborn as sns
sns.pairplot(df, hue='target')from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)from sklearn.metrics import classification_report, confusion_matrix
y_pred = model.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))import pandas as pd
df = pd.DataFrame(data=cancer.data, columns=cancer.feature_names)
df['target'] = cancer.targetfrom sklearn.model_selection import train_test_split
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)from sklearn.metrics import classification_report, confusion_matrix
y_pred = model.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))